

Prelude
toProgramming
Sixth Edition Concepts and Design

Stewart Venit | Elizabeth Drake

Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan
Munich Paris Montréal Toronto Delhi Mexico City Sáo Paulo Sydney

Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Trabox
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Senior Project Manager: Marilyn Lloyd
Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Art Director, Cover: Jayne Conte

Text Designer: Gillian Hall
Cover Designer: Bruce Kenselaar
Manager, Visual Research: Karen Sanatar
Permissions Supervisor: Michael Joyce
Permission Administrator: Jenell Forschler
Cover Image: © Bombaert Patrick / Fotolia
Media Project Manager: Renata Butera
Full-Service Project Manager: Haseen Khan/

Laserwords, Pvt. Ltd
Full-Service Vendor: Laserwords, Pvt. Ltd
Printer/Binder: Courier Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown

Credits:

Cover: © Bombaert Patrick / Fotolia; Figure 0.1 U. S. Army Center of Military History; Figure 0.2 dule964/Fotolia;
Figure 0.3 Shutterstock/Stu49; Figure 0.4a Jultud/Fotolia; Figure 0.4b Giuseppe Lancia/Fotolia; Figure 0.5 Fotosearch/
Publitek, Inc.; Figure 0.7 National Center for Computational Sciences; Figure 6a Chuck/Alamy; Figure 6b Marian
Stanca/Alamy; Figure 11.01a Shutterstock; Figure 11.01b Shutterstock

Screenshots throughout the entire text: RAPTOR is provided free courtesy of the United States Air Force Academy,
http://raptor.martincarlisle.com/

Copyright © 2015, 2011, 2009 Pearson Education, Inc., publishing as Addison-Wesley All rights reserved. Manufac-
tured in the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458 or you may fax your request to 201 236-3290.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data will be available upon request

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-374163-X
ISBN 13: 978-0-13-374163-6

http://raptor.martincarlisle.com/

iii

Brief Contents

Preface xv

0 Introduction 1
1 An Introduction to Programming 25
2 Data Representation 67
3 Developing a Program 113
4 Selection Structures: Making Decisions 179
5 Repetition Structures: Looping 255
6 More about Loops and Decisions 329
7 Arrays: Lists and Tables 407
8 Searching and Sorting Arrays 465
9 Program Modules, Subprograms, and Functions 527

10 Sequential Data Files 599
11 Object-Oriented and Event-Driven Programming 655

Appendix A: Study Skills 727
Appendix B: The ASCII Character Set: Printable Characters 735
Appendix C: Answers to Self Checks 739

Index 779

This page intentionally left blank

v

Contents

Preface xv

0 Introduction 1

In the Everyday World: You Are Already a Programmer! 2
0.1 A Brief History of Computers 2

What Is a Computer? 2
Personal Computers 4
The Internet 7

0.2 Computer Basics 8
The Central Processing Unit 9
Internal Memory 9
Mass Storage Devices 10
Input Devices 12
Output Devices 12

0.3 Software and Programming Languages 14
Types of Software 14
Types of Programming and Scripting Languages 15

Chapter Review and Exercises 19

1 An Introduction to Programming 25

In the Everyday World: You Are Already a Programmer! 26
1.1 What Is Programming? 26

A General Problem-Solving Strategy 27
Creating Computer Programs: The Program Development Cycle 28

1.2 Basic Programming Concepts 29
A Simple Program 29
Data Input 32
Program Variables and Constants 34

1.3 Data Processing and Output 37
Processing Data 37
Data Output 41

1.4 Data Types 45
The Declare Statement 45

vi Contents

Character and String Data 45
1.5 Integer Data 48

Operations on Integers 49
1.6 Floating Point Data 50

The Declare Statement Revisited 51
Types of Floating Point Numbers 53

1.7 Running With RAPTOR (Optional) 58
Introducing RAPTOR 58

Chapter Review and Exercises 60

2 Data Representation 67

In the Everyday World: It Isn’t Magic—It’s Just Computer Code 68
2.1 Decimal and Binary Representation 68

Bases and Exponents 68
The Binary System 70

2.2 The Hexadecimal System 73
Hexadecimal Digits 73
Using Hexadecimal Notation 77

2.3 Integer Representation 80
Unsigned Integer Format 80
Sign-and-Magnitude Format 81
One’s Complement Format 84
Two’s Complement Format 86

2.4 Floating Point Representation 91
Floating Point Numbers: the Integer Part 91
Floating Point Numbers: the Fractional Part 91
Converting a Decimal Fraction to Binary 93
Putting the Two Parts Together 96

2.5 Putting it All Together 97
Scientific Notation 97
Exponential Notation 98
Base 10 Normalization 99
Normalizing Binary Floating Point Numbers 100
The Excess_127 System 100
Base 2 Normalization 101
Single- and Double-Precision Floating Point Numbers 101
Hexadecimal Representation 104

Chapter Review and Exercises 106

3 Developing a Program 113

In the Everyday World: Planning to Program? You Need a Plan 114
3.1 The Program Development Cycle 115

The Process of Developing a Program 115
Additional Steps in the Cycle 118

3.2 Program Design 122
Modular Programming 122

Contents vii

3.3 Coding, Documenting, and Testing a Program 131
Coding and Documenting a Program 131
Testing a Program 133
Types of Errors 134

3.4 Commercial Programs: Testing and Documenting 135
The Testing Phase Revisited 136
External Documentation 136

3.5 Structured Programming 138
Flowcharts 138
Control Structures 143
Programming Style 146

3.6 Running With RAPTOR (Optional) 147
Getting Started 148
Introduction to RAPTOR Symbols 149
Variables 151
RAPTOR Symbols 155
Run It: The Sign-In Program 164
Developing the Program 165
Creating the Program in RAPTOR: Input 165
Creating the Program in RAPTOR: Processing 168
Creating the Program in RAPTOR: Output 169
Check It Out 170

Chapter Review and Exercises 172

4 Selection Structures: Making Decisions 179

In the Everyday World: Decisions, Decisions, Decisions . . . 180
4.1 An Introduction to Selection Structures 181

Types of Selection Structures 181
Single- and Dual-Alternative Structures 182

4.2 Relational and Logical Operators 188
Relational Operators 188
Logical Operators 191
Hierarchy of Operations 196

4.3 ASCII Code and Comparing Strings 199
Representing Characters With Numbers 199

4.4 Selecting from Several Alternatives 203
Using If Structures 203
Using Case-Like Statements 206

4.5 Applications of Selection Structures 210
Defensive Programming 210
Menu-Driven Programs 214

4.6 Focus on Problem Solving: A New Car Price Calculator 216
Problem Statement 216
Problem Analysis 217
Program Design 217
Program Code 220
Program Test 220

viii Contents

4.7 Running With RAPTOR (Optional) 221
The Selection Symbol 221
The Call Symbol and Subcharts 224
An Example 226
Run It: The New Car Price Calculator 232
Developing the Program 232
Check It Out 242

Chapter Review and Exercises 243

5 Repetition Structures: Looping 255

In the Everyday World: Doing the Same Thing Over and Over
and Knowing When to Stop 256
5.1 An Introduction to Repetition Structures: Computers Never

Get Bored! 257
Loop Basics 257
Relational and Logical Operators 261

5.2 Types of Loops 263
Pre-Test and Post-Test Loops 263
Counter-Controlled Loops 268

5.3 The For Loop 274
The For Statement 275
The For Loop in Action 278
The Careful Bean Counter 281

5.4 Applications of Repetition Structures 286
Using Sentinel-Controlled Loops to Input Data 286
Data Validation 290
The Floor() and Ceiling() Functions 294
Computing Sums and Averages 297

5.5 Focus on Problem Solving: A Cost, Revenue, and Profit
Problem 302
Problem Statement 302
Problem Analysis 302
Program Design 304
Program Code 307
Program Test 307

5.6 Running With RAPTOR (Optional) 308
Repetition: The Loop Symbol 308
A Short Example 310
Run It: Encryption: The Secret Message Encoder 312
What is Encryption? 313
Problem Statement 313
Developing the Program 313
Developing the Encrypting Algorithms 314
Check It Out 320

Chapter Review and Exercises 321

Contents ix

6 More about Loops and Decisions 329

In the Everyday World: Loops Within Loops 330
6.1 Combining Loops with If-Then Statements 330

Exiting a Loop 331
6.2 Combining Loops and Decisions in Longer Programs 341

The Length_Of() Function 346
The Print Statement and the New Line Indicator 347

6.3 Random Numbers 351
The Random() Function 351
Not Really Random: The Pseudorandom Number 356

6.4 Nested Loops 357
Nested For Loops 357
Nesting Other Kinds of Loops 362
A Mental Workout: Mind Games 367

6.5 Focus on Problem Solving: A Guessing Game 374
Problem Statement 375
Problem Analysis 375
Program Design 376
Program Code 381
Program Test 381

6.6 Running With RAPTOR (Optional) 383
Two Short Examples 383
Run It: Validating a Password 387
Problem Statement 387
Developing the Program 387
Check the length of the password (4–8 characters) 389
Check the first character of the password (cannot be a number, 0–9) 391
Check that the password contains one of the special
characters (#, *, or $) 392

Chapter Review and Exercises 399

7 Arrays: Lists and Tables 407

In the Everyday World: Organize It with Lists and Tables 408
7.1 One-Dimensional Arrays 409

Array Basics 409
7.2 Parallel Arrays 416

Some Advantages of Using Arrays 420
A Word About Databases 423

7.3 Strings as Arrays of Characters 424
Concatenation Revisited 424
String Length versus Array Size 426

7.4 Two-Dimensional Arrays 429
An Introduction to Two-Dimensional Arrays 430
Using Two-Dimensional Arrays 431

x Contents

7.5 Focus on Problem Solving: The Magic Square 436
Problem Statement 436
Problem Analysis 437
Program Design 438
Program Code 444
Program Test 444

7.6 Running With RAPTOR (Optional) 445
A Short Example 448
Run It: Self-Grading Math Test 450
Problem Statement 450
Developing and Creating the Program 450
Check It Out 456

Chapter Review and Exercises 459

8 Searching and Sorting Arrays 465

In the Everyday World: Searching and Sorting 466
8.1 Introduction to Searching and Sorting 466

The Serial Search Technique 466
Basic Steps in a Serial Search 467
Pseudocode for a Serial Search 468

8.2 The Bubble Sort Technique 471
Swapping Values 472
Using the Bubble Sort Algorithm 474

8.3 The Binary Search 480
Use the Binary Search for Large Arrays 481

8.4 The Selection Sort 486
General Selection Sort Technique 486
Applying the Selection Sort Technique 488

8.5 Focus on Problem Solving: A Grade Management Program 491
Problem Statement 491
Problem Analysis 491
Program Design 493
Program Code 499
Program Test 500

8.6 Running With RAPTOR (Optional) 500
The Serial Search 500
The Bubble Sort 503
The Binary Search 505
The Selection Sort 507
Run It: Soccer Camp 509
Problem Statement 509
Developing and Creating the Program 509
Check It Out 515
Revise and Improve 516
Check It Out 517

Chapter Review and Exercises 519

Contents xi

9 Program Modules, Subprograms, and Functions 527

In the Everyday World: Living and Programming in Manageable
Pieces: Subprograms 528
9.1 Data Flow Diagrams, Arguments, and Parameters 529

A Big Sale: The Sale Price Computation Program 529
Data Flow Diagrams 530
An Introduction to Arguments and Parameters 531

9.2 More about Subprograms 537
Value and Reference Parameters 537
How to Tell the Difference between Value and Reference
Parameters 539
Two Helpful Functions: ToUpper() and ToLower() 542
The Scope of a Variable 545

9.3 Functions 550
Built-in Functions 550
User-Defined Functions 553

9.4 Recursion 558
The Recursive Process 558

9.5 Focus on Problem Solving: A Fitness Plan 563
Problem Statement 563
Problem Analysis 563
Program Design 564
Program Code 570
Program Test 570

9.6 Running With RAPTOR (Optional) 573
RAPTOR Built-In Functions (Procedures) 573
Creating a New Procedure 576
Run It: The Fitness Plan 581
Problem Statement 581
Developing and Creating the Program 582
Check It Out 590

Chapter Review and Exercises 592

10 Sequential Data Files 599

In the Everyday World: Keeping it On File 600
10.1 An Introduction to Data Files 601

File Basics 601
Creating and Reading Sequential Files 603

10.2 Modifying a Sequential File 608
Deleting Records 609
Modifying Records 612
Inserting Records 613
Using Arrays in File Maintenance 615

10.3 Merging Sequential Files 617

xii Contents

10.4 Focus on Problem Solving: Control Break Processing 620
Problem Statement 620
Problem Analysis 621
Program Design 622
Coding and Testing the Program 625

10.5 Focus on Problem Solving: The Invoice Preparation
Program 625
Problem Statement 626
Problem Analysis 626
Program Design 627
Program Code 631
Program Test 631

10.6 Running With RAPTOR (Optional) 632
Creating Data Files with the Redirect_Output() Procedure 632
Displaying Data Files with the Redirect_Input() Procedure 633
The Limitations 636
Run It: Professor Weisheit’s Semester Grades 637
Check It Out 645

Chapter Review and Exercises 647

11 Object-Oriented and Event-Driven Programming 655

In the Everyday World: Objects are Everywhere 656
11.1 Classes and Objects 656

Classes 656
Defining Classes and Creating Objects 659
Creating Objects 661
The Constructor 663

11.2 More Features of Object-Oriented Programming 664
Benefits of Object-Oriented Languages 664
Inheritance and Polymorphism 665

11.3 Object-Oriented Program Design and Modeling 675
Modeling Languages 678
Unified Modeling Language (UML) 678

11.4 Graphical User Interfaces and Event-Driven
Programming 681
Window Components 681
Creating GUI Objects in a Program 682
Event-Driven Programming 684
Handling Events 684
Event-Driven Program Design 687

11.5 Focus on Problem Solving: Another Grade Management
Program 689
Problem Statement 689
Problem Analysis 689
Program Design 690
Program Code 695
Program Test 696

Contents xiii

11.6 Running With RAPTOR (Optional) 697
Object-Oriented Mode 697
Creating a Class 697
The main Program 704
Inheritance and Polymorphism 704
Run It: Monster Evasion 705
Problem Statement 705
Developing and Creating the Program 705
The main program 709
Using the Classes 713
Check It Out 716

Chapter Review and Exercises 718

Appendix A:
Study Skills 727
A.1 Achieving Success in the Course 727
A.2 Using the Textbook 728
A.3 Doing the Homework 729
A.4 Writing Programs 730
A.5 Preparing for Tests 731
A.6 More about Preparing for Tests 732
A.7 Taking Tests 733
A.8 Overcoming Test Anxiety 734

Appendix B:
The ASCII Character Set: Printable Characters 735

Appendix C:
Answers to Self Checks 739

Index 779

This page intentionally left blank

xv

Preface

Prelude to Programming: Concepts & Design provides a language-independent intro-
duction to programming concepts that helps students learn the following:

● General programming topics, such as data types, control structures, arrays,
files, functions, and subprograms

● Structured programming principles, such as modular design, proper program
documentation and style, and event-driven and object-oriented program
design

● Basic tools and algorithms, such as data validation, defensive programming,
sums and averages computation, and searching and sorting algorithms

● Real programming experience through the optional use of RAPTOR, a free
flowchart-based programming environment

● Data representation of integer and floating point numbers

No prior computer or programming experience is necessary.

Changes to the Sixth Edition
There are significant and exciting changes in this edition. The text continues to
strive to enhance learning programming concepts and to provide students with an
enriched experience. Throughout the text, concepts build from clear and simple
introductory explanations to complex and challenging Examples and Review Exer-
cises. Major improvements include the following:

● Rather than relegating the material on data representation to Appendices,
an entire chapter is devoted to these concepts. This chapter is completely
independent of the rest of the content and can be skipped with no loss of
continuity. However, instructors who want to include the material now have
more examples and end-of-chapter Review Exercises.

● Chapter 0 has been revised with up-to-date content relating to new
technologies.

● Chapter 1 has been revised and now includes information on the Boolean
data type.

● The material on arrays, searching, and sorting has been divided into
two chapters. Chapter 7 focuses on creating and using both one- and

xvi Preface

two-dimensional arrays. Chapter 8 presents algorithms with extensive exam-
ples for searching and sorting.

● The text uses RAPTOR, a free flowcharting software application that allows
students to create and run programs without focusing on syntax. Each chap-
ter, from Chapter 3 on, includes an optional section devoted to learning
RAPTOR and using RAPTOR to develop interesting, executable programs.

● Throughout the text Examples, Self Checks, and Review Exercises have
been redesigned when necessary to ensure that they can be worked with or
without RAPTOR.

● The Review Exercises in each chapter contain Multiple Choice, True/False,
Short Answer, and a Programming Challenges section. All Challenge prob-
lems are suitable for RAPTOR.

● When real code is given throughout the text, JavaScript code has been added.
● More built-in functions and properties are introduced including

Length_Of(), To_ASCII(), To_Character(), Indexing[], and more.
● The content in Chapter 11 on object-oriented programming has been thor-

oughly revised and simplified.
● New material on event-driven programming has been added to Chapter 11.

Organization of the Text
The text is written and organized to allow flexibility in covering topics. Material is
presented in such a way that it can be used in any introductory programming course at
any level. Each concept is presented in a clear, easily understood manner and the level
of difficulty builds slowly. The What & Why sidebars give students the opportunity
to think above and beyond the material in the Examples and encourage discussion and
student interaction. The Making it Work sidebars demonstrate how concepts are
applied in the real world. Examples, Self Checks, and Review Exercises increase
in difficulty from most basic to very challenging. The Programming Challenges
sections at the end of each chapter give students a chance to create longer, compre-
hensive programs from scratch and, if RAPTOR is used, they can run the programs
and see the results.

The text has been designed so that instructors can use it for students at various levels.
The core of the text consists of Chapter 1 and Chapters 3–7. Chapters 0 and 2 are
optional; Chapter 2 in particular covers material that is relatively complex and may
be skipped without consequence. Chapters 8–11 are independent of one another
except that some material in Chapter 9 is required to understand Chapter 11. Thus,
the text lends itself to a custom book adoption.

Chapter Summaries
● Chapter 0 provides an overview of general computer concepts.
● Chapter 1 discusses basic problem solving strategy and the essential compo-

nents of a computer program (input, processing, and output). A section on
data types introduces students to numeric, string, and Boolean types.

Preface xvii

● Chapter 2 is dedicated to data representation. Students learn to convert
decimal numbers to binary and hexadecimal. The various ways to repre-
sent integers (unsigned, signed, two’s complement) as well as floating point
numbers are covered. IEEE standards are used to represent floating point
numbers in single- and double-precision. The material in this chapter is
completely independent from the rest of the book.

● Chapter 3 introduces the program development process, the principles
of modular design, pseudocode, and flowcharts. Documentation, testing,
syntax and logic errors, and an overview of the basic control structures are
covered.

● Chapter 4 covers decision (selection) structures including single-, dual- and
multiple-alternative structures, relational and logical operators, the ASCII
coding scheme, defensive programming, and menu-driven programs.

● Chapters 5 and 6 present a complete coverage of repetition structures
(loops). Chapter 5 focuses on the basic loop structures: pre- and post-test
loops, sentinel-controlled loops, counter-controlled loops, and loops for
data input, data validation, and computing sums and averages. Chapter 6
builds on the basics from the previous chapters to create programs that use
repetition structures in combination with decision structures, nested loops,
and random numbers.

● Chapter 7 covers one-dimensional, two-dimensional, and parallel arrays.
Representation of character strings as arrays is also discussed. The material
in this chapter has been expanded from the previous edition, including more
examples to assist students in understanding this difficult material.

● Chapter 8 covers searching and sorting. Two search techniques (serial and
binary searches) and two sort techniques (bubble and selection sorts) are
included with expanded coverage.

● Chapter 9 covers functions and modules, including the use of arguments
and parameters, value and reference parameters, passing by reference ver-
sus passing by value, and the scope of a variable. Built-in and user-defined
functions are covered. Recursion—an advanced topic—is discussed in some
depth but can be skipped if desired.

● Chapter 10 is about sequential data files. The discussion covers records and
fields and how to create, write, and read from sequential files. Topics also
include how to delete, modify, and insert records, and how to merge files.
Arrays are used in conjunction with data files for file maintenance. The con-
trol break processing technique is demonstrated in a longer program.

● Chapter 11 is an introduction to the concepts of object-oriented program-
ming and event-driven programming. The object-oriented material in
this chapter has been revised for better understandability. The material on
event-driven programming is new to this edition. A short introduction to
modeling languages, including UML is given. Object-oriented design topics
include classes (parent and child), objects, inheritance, polymorphism, pub-
lic versus private attributes and methods, and the use of constructors. The
material on event-driven programming includes the graphical user interface
and window components. Properties and methods for various window con-
trols are also covered.

xviii Preface

Many sections throughout the text are devoted to more advanced applications
and are optional. In particular, the Focus on Problem Solving sections develop
relatively complex program designs, which some instructors may find useful to
illustrate the chapter material and others may elect to skip to save time. RAPTOR
can be used as a tool to illustrate concepts by creating examples throughout the text
in RAPTOR but can also be used to create longer and more challenging, creative
programs.

Running With RAPTOR: A Flowcharting
Environment
In this edition, each chapter from Chapter 3 onward contains an optional section
entitled Running With RAPTOR. The section describes how to use RAPTOR
for that chapter’s material with screenshots and step-by-step instructions. Short
examples demonstrate how RAPTOR is used to work with the chapter’s content and
a longer program is developed. In many chapters the RAPTOR program is an imple-
mentation of the long program developed in the Focus on Problem Solving section.
The Running With RAPTOR sections can be skipped with no loss of continuity.
However, if used, the longer RAPTOR programs give students a real-life experience
by creating interesting, running programs including games, encryption, and more.

Features of the Text

In the Everyday World
Beginning with Chapter 1, each chapter starts with a discussion of how the mate-
rial in that chapter relates to familiar things (for example, “Arrays in the Everyday
World”) This material provides an introduction to the programming logic used
in that chapter through an ordinary and easily understood topic, and establishes a
foundation upon which programming concepts are presented.

Making It Work
The Making It Work sidebars provide information about how to implement con-
cepts in an actual high-level language, such as C++, Java, JavaScript, or Visual Basic.
These boxed sidebars appear throughout the text and are self-contained and optional.

What & Why
Often we conclude an Example with a short discussion about what would happen
if the program were run, or what would happen if something in the program were
changed. These What & Why sidebars help students deepen their understanding
of how programs run. They are useful in initiating classroom discussion.

Making
It Work

What
&Why?

Preface xix

Pointers and Style Pointers
The concepts of programming style and documentation are introduced in Chapter 3
and emphasized throughout. Other Pointers appear periodically throughout the
text. These short notes provide insight into the subject or specialized knowledge
about the topic at hand.

Examples
There are more than 200 numbered worked Examples in the text. The pseudocode
in the Examples includes line numbers for easy reference. Detailed line-by-line
discussions follow the code with sections entitled What Happened?

Focus on Problem Solving
Each chapter from Chapter 4 to the end includes a Focus on Problem Solving
section which presents a real-life programming problem, analyzes it, designs a pro-
gram to solve it, discusses appropriate coding considerations, and indicates how the
program can be tested. In the process, students not only see a review of the chapter
material, but also work through a programming problem of significant difficulty.
These sections are particularly useful to prepare students for a language-specific
programming course. For selected programs there are real code implementations
in C++, Java, Visual Basic, and Python available on the Pearson website which
can be used to demonstrate how the concepts learned in the text apply to real-life
programs. The program code illustrates the congruence between the pseudocode
taught in this book and the code in a specific programming language. Executable
files are also included so the actual programs can be run, even if the code is not used
pedagogically.

Exercises
Many new exercises have been added to this edition to correspond with new material.
Many exercises have been revised to permit them to be implemented with RAPTOR.
The text contains the following diverse selection:

● Self Checks at the end of each section include items that test students’
understanding of the material covered in that section (answers to Self
Checks are in Appendix C)

● Review Questions at the end of each chapter include questions of various
types that provide further review of the chapter material (Answers to the odd-
numbered questions are available on the student support website; answers to
the even-numbered questions are on the instructor support web site).

● Programming Challenges at the end of each chapter require students
to design programs using the material learned in that chapter and earlier
chapters. All Programming Challenges can be implemented with RAPTOR.
Solutions to all Programming Challenges in RAPTOR are available on the
instructor support web site.

Style
Pointer

xx Preface

Supplements

Student Support Web Site
A variety of resources are available with this book. Students may access them at
www.pearsonhighered.com/venit-drake.

Instructor’s Supplements
Supplemental materials are available to qualified instructors at www.pearsonhighered
.com/irc, including the following:

● PowerPoint Presentations for all Chapters
● Solutions to all Self Checks including RAPTOR implementations of select

problems
● Solutions to all Review Exercises including corresponding RAPTOR

programs
● RAPTOR programs corresponding to all Programming Challenges
● Testbank

For further information about obtaining instructor supplements, contact your cam-
pus Pearson Education sales representative.

Acknowledgments
The In the Everyday World essays, a unique feature of this book, were envisioned
and drafted by Bill Hammerschlag of Brookhaven College for the second edition,
and are expanded and revised in this edition.

The implementations of the code in C++, Visual Basic, Java, and Python from the
Focus on Problem Solving sections were created by Anton Drake from the Uni-
versity of Florida, presently a software developer at OPIE Technologies.

A special thanks to Martin Carlisle who created RAPTOR and remains eager and
generous with his support.

We want to extend our thanks to Matt Goldstein, our most supportive and caring
Editor; to Marilyn Lloyd, the most patient and understanding Production Manager
ever; to Haseen Khan, the Project Manager at Laserwords who works on the other
side of the world but feels like my next-door neighbor; and to the entire team at
Pearson Education, including Kayla Smith-Tarbox and Yez Alayan. We also want
to extend a special thank you to Michael Hirsch who initially brought us together
on this project; without Michael, none of this would have been possible.

—Elizabeth Drake
and Stewart Venit

I want to thank my coauthor, Stewart Venit. It’s a pleasure to work with him.
Marilyn Lloyd and Haseen Khan are very special people; they answer my questions
with unfailing patience. I also want to thank my children, Anton and Severia, who

www.pearsonhighered.com/venit-drake
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

Preface xxi

have always encouraged my desire—my need—to write. My grandsons, Justy and
Jacob, make me smile by being impressed by my work.

—Elizabeth Drake

I would like to thank my coauthor, Elizabeth Drake, for greatly enhancing and
improving this book in each of the last four editions. I am grateful to my wife
Corinne, who, over the course of my 35 year writing career, never complained
about the countless hours I spent camped in front of a computer screen. I also want
to thank the rest of my family for being my family: daughter Tamara, son-in-law
Cameron, and grandchildren Evelyn and Damian.

—Stewart Venit

This page intentionally left blank

1

Introduction

In this introduction, we will discuss the history of computers and com-
puter hardware and software—the devices and programs that make a computer
work.

After reading this introduction, you will be able to do the following:
● Understand the evolution of computing devices from ancient Babylonia to

the twenty-first century
● Understand the components that make up a typical computer system: the

central processing unit, internal memory, mass storage, and input and
output devices

● Know the types of internal memory—RAM and ROM—and understand
their functions

● Know the types of mass storage: magnetic, optical, solid state, and online
storage

● Know the types of software used by a modern computer: application soft-
ware and system software

● Know the levels of programming languages: machine language, assembly
language, and high-level language

● Know the types of programming and scripting languages used to create
software

● Understand the distinction between programming and scripting languages

0

2 Chapter 0 ● Introduction

Computers Everywhere

A century ago, a child would listen in wonder as his parents described what life
was like before cars, electricity, and telephones. Today, a child listens in wonder
as his parents describe what life was like without video games, smart phones, GPS
systems, and computers. Seventy years ago, electronic computers didn’t exist. Now,
we use computers daily. Computers are in homes, schools, and offices; in super-
markets and fast food restaurants; on airplanes and submarines. Computers are in
our phones, kitchen appliances, and cars. We carry them in our backpacks, pockets,
and purses. They are used by the young and old, filmmakers and farmers, bankers
and baseball managers. By taking advantage of a wealth of diverse and sophisticated
software (programs and apps), we are able to use computers almost limitlessly for
education, communication, entertainment, money management, product design
and manufacture, and business and institutional processes.

In the
Everyday

World

0.1 A Brief History of Computers
Calculators, devices used to increase the speed and accuracy of numerical compu-
tations, have been around for a long time. For example, the abacus, which uses rows
of sliding beads to perform arithmetic operations, has roots that date back more
than 5,000 years to ancient Babylonia. More modern mechanical calculators, using
gears and rods, have been in use for almost 400 years. In fact, by the late nineteenth
century, calculators of one sort or another were relatively commonplace. However,
these machines were by no means computers as we use the word today.

What Is a Computer?
A computer is a mechanical or an electronic device that can efficiently store,
retrieve, and manipulate large amounts of information at high speed and with great
accuracy. Moreover, it can execute tasks and act upon intermediate results without
human intervention by carrying out a list of instructions called a program.

Although we tend to think of the computer as a recent development, Charles
Babbage, an Englishman, designed and partially built a true computer in the mid-
1800s. Babbage’s machine, which he called an Analytical Engine, contained hun-
dreds of axles and gears and could store and process 40-digit numbers. Babbage was
assisted in his work by Ada Augusta Byron, the daughter of the poet Lord Byron.
Ada Byron grasped the importance of the invention and helped to publicize the
project. A major programming language (Ada) was named after her. Unfortunately,
Babbage never finished his Analytical Engine. His ideas were too advanced for the
existing technology, and he could not obtain enough financial backing to complete
the project.

Serious attempts to build a computer were not renewed until nearly 70 years
after Babbage’s death. Around 1940, Howard Aiken at Harvard University, John
Atanasoff, and Clifford Berry at Iowa State University built machines that came close
to being true computers. However, Aiken’s Mark I could not act independently on

0.1 A Brief History of Computers 3

its intermediate results, and the Atanasoff-Berry computer required the frequent
intervention of an operator during its computations.

Just a few years later in 1945, a team at the University of Pennsylvania, led by
John Mauchly and J. Presper Eckert, completed work on the world’s first fully
operable electronic computer. Mauchly and Eckert named it ENIAC, an acronym
for Electronic Numerical Integrator and Computer. ENIAC (see Figure 0.1) was
a huge machine. It was 80 feet long, 8 feet high, weighed 33 tons, contained over
17,000 vacuum tubes in its electronic circuits, and consumed 175,000 watts of elec-
tricity. For its time, ENIAC was a truly amazing machine because it could accu-
rately perform up to 5,000 additions per second. However, by current standards, it
was exceedingly slow. A modern run-of-the-mill personal computer can exceed 100
million operations per second!

For the next decade or so, all electronic computers used vacuum tubes (see
Figure 0.2) to do the internal switching necessary to perform computations. These
machines, which we now refer to as first-generation computers, were large by mod-
ern standards, although not as large as ENIAC. They required a climate-controlled
environment and a lot of tender love and care to keep them operating. By 1955,
about 300 computers—built mostly by IBM and Remington Rand—were being
used, primarily by large businesses, universities, and government agencies.

Figure 0.1 The ENIAC computer

Source: U.S. Army

4 Chapter 0 ● Introduction

By the late 1950s, computers had become much faster and more reliable. The most
significant change at this time was that the large, heat-producing vacuum tubes
were replaced by relatively small transistors. The transistor (see Figure 0.3) is one
of the most important inventions of the twentieth century. It was developed at Bell
Labs in the late 1940s by William Shockley, John Bardeen, and Walter Brattain,
who later shared a Nobel Prize for their achievement. Transistors are small and
require very little energy, especially compared to vacuum tubes. Therefore, many
transistors can be packed close together in a compact enclosure.

In the early 1960s, Digital Equipment Corporation (DEC) took advantage of small,
efficient packages of transistors called integrated circuits to create the minicom-
puter, a machine roughly the size of a four-drawer filing cabinet. Because these
computers not only were smaller but also less expensive than their predecessors,
they were an immediate success. Nevertheless, sales of larger computers, now
called mainframes, also rapidly increased. The computer age had clearly arrived
and the industry leader was the IBM innovative System 360.

Personal Computers
Despite the increasing popularity of computers, it was not until the late 1970s that
the computer became a household appliance. This development was made possible
by the invention of the microchip (see Figure 0.4) in the 1960s. A microchip is a
piece of silicon about the size of a postage stamp, packed with thousands of electronic
components. The microchip and its more advanced cousin, the microprocessor,
led to the creation of the world’s first personal computer (PC) in 1974. The PC

Figure 0.2 A vacuum tube

Figure 0.3 An early transistor

0.1 A Brief History of Computers 5

was relatively inexpensive compared to its predecessors and was small enough to
fit on a desktop. This landmark computer, the Altair 8800 microcomputer, was
unveiled in 1975. Although it was a primitive and not a very useful machine, the
Altair inspired thousands of people, both hobbyists and professionals to become
interested in PCs. Among these pioneers were Bill Gates and Paul Allen, who later
founded Microsoft Corporation, now one of the world’s largest companies.

Apple Computers and the IBM PC
The Altair also captured the imagination of two young Californians, Stephen
Wozniak and Steven Jobs. They were determined to build a better, more use-
ful computer. They founded Apple Computer, Inc., and in 1977 they introduced
the Apple II, which was an immediate hit. With the overwhelming success of this
machine and Tandy Corporation’s TRS-80, companies that were manufacturing
larger minicomputers and mainframes began to notice. In 1981, IBM introduced
the popular IBM PC (see Figure 0.5), and the future of the PC was assured.

Figure 0.4 The microchip

Figure 0.5 The IBM PC, introduced in 1981, is an antique now!

6 Chapter 0 ● Introduction

Many companies hoping to benefit from the success of the IBM PC, introduced com-
puters that could run the same programs as the IBM, and these “IBM compatibles”
soon dominated the market. Even the introduction of Apple’s innovative and easy-
to-use Macintosh in 1984 could not stem the tide of the IBM compatibles. These
computers, virtually all of which make use of Microsoft’s Windows operating system,
have also spawned a huge array of software (computer programs) never dreamed
of by the manufacturers of the original mainframes. This software includes word
processors, photo editing programs, Web browsers, spreadsheet programs, database
systems, presentation graphics programs, and a seemingly infinite variety of com-
puter games. However, while in 2000 the Windows operating system commanded
more than 95% of the market share, today’s mobile devices, such as smart phones
and tablets, have reduced Microsoft’s domination drastically with Google’s Android
operating system and the Apple operating system providing strong competition.

Today’s Computers
Today the computer market comprises a vast array of machines. Personal comput-
ers are everywhere and range in price from a few hundred to a few thousand dol-
lars. For the most part, their manufacturers are billion dollar companies like IBM,
Dell, Hewlett-Packard, and Apple. Although PCs are small and inexpensive, they
produce a remarkable amount of computing power. Today’s tablets, which can
weigh less than a pound and fit into a handbag, are far more powerful than the most
advanced mainframes of the mid-1970s (see Figure 0.6).

Minicomputers have also found their niche. Unlike PCs, these machines can be used
by a number of people (typically 16 or more) working simultaneously at separate
and remote terminals. Each terminal consists of a keyboard and a display screen.
Minicomputers have become the mainstay of many small businesses and universi-
ties, but mainframe computers are by no means dinosaurs. These relatively large
and costly machines supply users with tremendous power to manipulate informa-
tion. Supercomputers (see Figure 0.7) are even more powerful than mainframes
and can process well over 1 billion instructions per second. For a special effects
company like Industrial Light and Magic or a government agency like the Internal
Revenue Service, there is no substitute for a large mainframe or supercomputer.

Figure 0.6 Today’s laptop and tablet computers

0.1 A Brief History of Computers 7

The Internet
Despite the recent advances in computer technology, arguably the most significant
development in the last 15 years has been the phenomenal rise in popularity of the
Internet—a worldwide collection of networks. A network consists of two or more
linked computers that are able to share resources and data wirelessly or via cable or
phone lines. The Internet has roots that date back to a relatively small U.S. Defense
Department project in the late 1960s. Since then, the Internet has grown from a
small collection of mainframe computers used by universities and the military to
more than 2.5 billion users worldwide who range in age from preschoolers to cente-
narians. Before the advent of smart phones, the two main attractions of the Internet
were email and the World Wide Web. Email, which is short for electronic mail,
allows anyone with access to the Internet to use his or her computer to exchange
messages with another Internet user anywhere in the world almost instantaneously
and at little or no cost. The World Wide Web (more simply called the Web)
originated in 1989. It is a vast collection of linked documents (web pages) created
by Internet users and stored on thousands of Internet-connected computers.

Today social networking sites have rivaled the popularity of email. These sites are
part of Web2.0, the next generation of the World Wide Web. Web2.0 consists of
web applications that facilitate information sharing, user-centered design, and col-
laboration. While the term suggests a new version of the Web, it is not an update
or change in technical specifications, but rather a change in the way people use the
Web. Web2.0 generally refers to Web-based communities (such as Second Life),
wikis (such as the online encyclopedia, Wikipedia), social-networking sites (such as
Facebook), video-sharing sites (like YouTube), and more.

Self Check for Section 0.1

0.1 What characteristics of a computer distinguish it from the following?
a. A simple (non-programmable) calculator
b. A programmable calculator

Figure 0.7 The Jaguar/Cray XT5—a modern supercomputer

8 Chapter 0 ● Introduction

0.2 Complete each of the following statements:
a. A ____________ is a list of instructions to be carried out by the

computer.
b. The first fully operative electronic computer was called ____________.
c. The fastest computers in use today are called ____________.
d. The ____________ is a worldwide collection of interlinked networks.

0.3 True or false? The first personal computers were produced in the 1970s.

0.4 True or false? Transistors, which eventually replaced the vacuum tubes of
early computers, were invented in the 1940s.

0.5 True or false? Minicomputers and mainframe computers have become
obsolete; they are no longer in use.

0.6 True or false? Web2.0 is a new version of the World Wide Web, including
updated technical specifications.

0.7 Match the people listed in the first column with the corresponding com-
puter from the second column.
1. Charles Babbage and Ada Byron ___ a. ENIAC
2. J. Presper Eckert and John Mauchly ___ b. Apple II
3. Steven Jobs and Stephen Wozniak ___ c. Analytical Engine

0.2 Computer Basics
In Section 0.1 we defined a computer as a mechanical or an electronic device that can
efficiently store, retrieve, and manipulate large amounts of information at high speed
and with great accuracy. Regardless of the type of computer—from the original
desktop machine with a separate tower, monitor, keyboard, and mouse to the small-
est, thinnest smart phone to the elaborate digital display on a car’s dashboard—a
computer consists of the same basic components. As the definition implies, a com-
puter must have the ability to input, store, manipulate, and output data. These func-
tions are carried out by the following five main components of a computer system:

1. The central processing unit (CPU)
2. Internal memory (consisting of RAM and ROM)
3. Mass storage devices (magnetic, optical, and solid state) and the Cloud
4. Input devices (primarily the keyboard and mouse)
5. Output devices (primarily the monitor and printer)

In this section, we will describe these components as they are implemented on a
modern personal computer.

In a desktop PC, the CPU, internal memory, and most mass storage devices are
located in the system unit. The input and output devices are housed in their own
enclosures and are connected to the system unit by cables, or more recently, by
wireless transmitters. Components like these, which are used by a computer but
located outside the system unit, are sometimes referred to as peripherals. Laptop
and tablet computers house the CPU, internal memory, mass storage devices, a
monitor, and a keyboard, all in one relatively small package. The physical equip-
ment that makes up the computer system is known as hardware.

0.2 Computer Basics 9

The Central Processing Unit
The central processing unit (also called the processor or CPU) is the brain of
the computer. It receives the program instructions, performs the arithmetic and
logical operations necessary to execute them, and controls the other computer
components. In a PC, the processor consists of millions of transistors that reside on
a single microchip about the size of a postage stamp and plug into the computer’s
main circuit board, the motherboard.

More than any other component, the CPU distinguishes one computer from
another. A primary factor in determining the power of a processor is its speed, mea-
sured in gigahertz (GHz). For example, the Pentium IV microprocessor, produced
by Intel Corporation for use in PCs, is a chip that is produced in several variations
that run at speeds up to 4 GHz. However, due to various factors, some processors
are more powerful than others running at the same speed.

Internal Memory
A computer uses its internal memory to store instructions and data to be pro-
cessed by the CPU. In a PC, memory resides on a series of chips either plugged
directly into the motherboard or into one or more smaller circuit boards connected
to the motherboard. There are two types of internal memory: read-only memory
(ROM) and random-access memory (RAM).
ROM contains an unalterable set of instructions that the computer uses during its
start-up process and for certain other basic operations. RAM on the other hand, can
be read from and written to. It’s used by the computer to hold program instructions
and data. You can think of ROM as a reference sheet, and RAM as a scratchpad,
albeit a very large scratchpad. ROM is an integrated circuit programmed with spe-
cific data when it is manufactured. This information cannot be altered by the user;
therefore, ROM is a permanent form of memory storage while RAM is the memory
used by the computer to hold the data you are working on at any given time. For
example, if you are writing an English essay with a word processor, as you write the
essay you see it on your monitor, but it is also being held in RAM. When you close
the word processing program or turn off the computer, all the information stored
in RAM is lost. That’s why it’s important to save your work to some permanent
storage medium—as most of us have learned at one time or another, to our dismay!

The smallest unit of memory is the bit. A bit can store only two different values—a
zero or a one. It takes eight bits—one byte—to store a single character in memory.
(Loosely speaking, a character is any symbol you can type, such as a letter, digit,
or a punctuation mark.) Storing an instruction usually takes sixteen or more bits.

It would be impractical to talk about the size of a file in bits when just a single line
of text might use hundreds of bits. Instead, the basic unit of memory is a byte.
Memory is measured in kilobytes (KB), megabytes (MB), or gigabytes (GB).
One kilobyte is 1,024 (1,024 = 210) bytes and one megabyte is 1,024 kilobytes. A
gigabyte is 1,073,741,824 (1,0249 or 230) bytes. For example, 128 MB of RAM can
store 134,217,728 characters of information at one time because, mathematically,
the number of characters equals the number of bytes as follows:

128 MB *
1,024 KB

MB
*

1,024 bytes
KB

= 134,217,728 bytes

